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I. INTRODUCTION

Emphasis has recently been placed on obtaining increased range and
greater payload capacity for new Army projectile shapes. These require-
ments have led to projectile shapes with long slender ogives, increased
length and boattailed afterbodies. The new designs have resulted in
decreased drag; however, the stability of these projectiles has also
been decreased. Thus, these new shapes are more susceptible to a Magnus
induced instability. Also, the increased length of these new shapes has
contributed to an increase in the Magnus moment. These factors have
resulted in renewed interest in the study of the Magnus effect.

This report describes an experimental study of the effects of spin
on boundary-layer development ovei" a seven caliber tangent-ogive-
cylinder model in supersonic flow. This experimental study is part r;£

the BRL Magnus research effort which is being undertaken to develop a
better understanding of the physics of the Magnus effect. The objectives
of this particular experiment are to: (1) examine the effect of spin on
boundary-layer development; (2) examine the significance of the boundary-
layer configuration (laminar, transitional or turbulent) on the resulting
Magnus force experienced by the model; and (3) provide detailed experi-
mental data which will be of value in evaluating theoretical models of
the Magnus effect. This report is supplementary to Reference 1 which
reports an experimental investigation of the flow over a spinning cone
model.

II. THE EXPERIMENT

The experimental study consisted of two parts: (1) an optical
study of the effects of spin on boundary-layer transition; and (2) the
effect of different boundary-layer configurations on the Magnus force
as measured using a strain-gage balance.

A. Test Facility

2
The test facility used was Supersonic Tunnel No. 1 at the Ballistic

Research Laboratories (BRL). This is a continuous flow facility with a
( flexible plate symmetric nozzle. The test section has a height of 38 cm

. W. B. Sturek, "Boundary Layer Studies on a Spinning Cone," BRL
Report No. 1649, U.S. Army Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland, May 1973. AD 762564.

2. J. C. McAfullen, "Wind Tunnel Testing Facilities at the BallisticResearch Laboratories," BRL Memorandum Report No. 1292, U.S. Army

Ballistic Research Laboratories, Aberdeen Proving Ground,
Maryland, July 1960. AD 244180.
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and a width of 33 cm. The nominal tunnel operating conditions for each

test are given in Table I. The total temperature was controlled within
- 1K and the total pressure was maintained within ± 0.4 percent during
each individual test run.

B. Model

The model used for these tests was a seven caliber long tangent-
ogive-cylinder with a one-caliber ogive section. The diameter of the
cylinder portion was 5.08 cm. A view of the model mounted in the test
section is shown in Figure 1. The model was suspended on ball bearings
and an internal air driven turbine was used to drive the model in spin.
The model was made of high strength aluminum alloy and was highly
polished. The model was dynamically balanced to a tolerance of 2.1
gm-cm.

C. Optical Study

Spark shadowgraphs were taken of the flow over the model while
mounted on an offset strut. Two offset struts were used giving angles
of attack of 20 and 4'. A picture of these offset struts is shown in
Figure 2. Using the roll head, pictures were taken at ]5* increments
in azimuth for azimuthal angles from 0 to +180 ° and from 0 to -90*.
Spark shadowgraphs were obtained for M = 2, 3, and 4 and for spin rates
of 0, 8,000, 16,000, and 24,000 rpm. The tunnel total pressure was
maintained at a high value in order to enhance the occurrence of
natural transition to turbulence before reaching the base of the model
on the windside. The spark shadowgraphs were taken while holding the
model at a constant spin rate. A spark shadowgraph of the flow over
the model is shown in Figure 3 for M = 2, a = -40, and w = 0 rpm.

D. Strain-Gage Balance Measurements

Magnus and normal forces were measured using the strain gage
balance technique for different boundary-layer configurations. The
boundary-layer configuration refers to the relative regions of laminar
and turbulent boundary layer occurring on the model for a particular
flow condition. The flow conditions obtained were: (1) low tunnel
total pressure--predominantly laminar boundary layer; (2) high tunnel
total pressure-- approximately comparable regions of laminar and turbu-
lent boundary layer (same operating conditions as that for the optical
study); and (3) high tunnel total pressure with the boundary layer
tripped to turbulent by a band of #80 sand grit, 0.63 cm wide, placed
2.5 cm from the tip of the model. The effectiveness of this trip is
indicated in Figure 4 which shows a spark shadowgraph of the flow for
M = 2, a = -40, and w = 0. The boundary-layer trip performed well for
the case shown herp At M = 4, the trip was somewhat less effective,
but was considered satisfactory.

8 V



The strain gage balance used was SB219. This is a moment-type
balance, designed and fabricated at the Exterior Ballistics Laboratory
(EBL). This balance has three sets of gages: (1) forward normal,
forward yaw; (2) aft normal, aft yaw; and (3) aft-aft yaw. The limit-
ing loads are 60 in-lbs (6.78 m-N) in pitch and 43 in-lbs (4.86 m-N) in
yaw at the forward position; 80 in-lbs (9.04 m-N) in pitch and 53 in-
lbs (5.99 m-N) in yaw at the aft position; and 146 in-lbs (16.50 m-N)
in yaw at the aft-aft position.

The Magnus measurements were made while holding the model at a
fixed angle of attack. The model was spun up to 30,000 RPM using the
internal air driven turbine, the turbine air was shut off, and data
were recorded on magnetic tape at fixed intervals of time while the
model coasted to zero spin. The spin down time was typically six
minutes--very favorable for obtaining good quality Magnus data.

Normal force and moment data were obtained while the model was
spinning, and also while the model was slowly moved in angle of attack
from +12 to -4 degrees with zero spin.

The accuracy of the force measurements is estimated to be within
± .0006 in side force coefficient and within ± .005 in normal force
coefficient.

III. DISCUSSION OF THE RESULTS

A. Effect of Spin on Boundary-Layer Transition

The location of boundary-layer transition was determined from the
spark shadowgraphs as the position where the boundary layer appeared to
be fully turbulent. An example of this determination is indicated in
Figure 3. No attempt has been made to relate this criteria for transi-
tion to other means such as wall shear stress or wall heat transfer.
It should be emphasized here that no attempt to relate the transition
data obtained here to atmospheric flight will be made. These data are
being obtained to better understand the influence of spin on boundary-
layer development as it occurs on a wind tunnel model in order that a
meaningful comparison can be made between calculations of Magnus
effects and wind tunnel measurements. Figure 5 shows the coordinate
system used in presenting the data along with the direction and sense
of the forces, moments, and angles.

The boundary-layer transition data are shown in Figures 6 through
8. The data are plotted as the distance in calibers from the base of
the model to the location of boundary-layer transition. A solid line
has been drawn to indicate what is felt to be the trend of the data.
The cross-hatched region represents the region of turbulent boundary
layer while the clear region represents laminar boundary layer.

.1 9



L The data indicate substantial scatter for some cases. This is

especially true for the M = 2 data. The cause of this excessive scatter
is believed to be linked with the intermittent unsteady diffuser flow
that occurred at M = 2. However, for the most part, a trend of the data
as a function of azimuthal position and spin rate is apparent. The
trend for the data shown in Figure 7a is particularly well defined. The
trends with spin are: (1) transition is delayed where the crossflow
velocity is in the same direction as the surface spin; and (2) transi-
tion occurs earlier where the crossflow velocity opposes the spin
velocity.

The peculiar dip in the trend of the data for 4 1800 is suffi-
ciently persistent to lead one to suspect that this observation is not
experimental uncertainty. In considering the physics of this three-
dimensional boundary layer flow, it is apparent that 0 = 180' is a rear
stagnation point in the crossflow plane. Although the inviscid
azimuthal velocity is zero at this position, the azimuthal velocity
derivative is not zero and the flow is turned as it approaches this
crossflow stagnation point. The unusual behavior of the transition
location at the 180 ° position is likely a manifestation of this
flow situation.

B. Magnus Force Measurements

A comparison of Magnus force measurements is shown in Figure 9 for
the M = 3 data. These data are plotted as side force coefficient
versus non-dimensional spin rate for the three different boundary-layer
configurations. The significant trends of the data are: (1) the low
Po (ReD = 0.59 x 106) data--predominantly laminar boundary layer--are

nonlinear with spin rate and greater in magnitude than the high p0

(ReD = 1.06 x 106) data with natural boundary-layer transition; (2) the

high p0 data, with and without the boundary-layer trip, are linear with

spin rate; and (3) the tripped turbulent boundary layer data are greater
in magnitude at all spin rates than either case with natural boundary
layer transition.

Additional examples of the Magnus force measurements are shown in
Figures 10 and 11 for M = 2 and 4. These data exhibit trends similar
to that described above. A complete tabulation of the force measure-
ments and boundary layer transition data is given in Table II.

The only theory presently available for predicting Magnus effects
on bodies of revolution in supersonic flow is that published by Vaughn
and Reis 3. This theory is a semi-empirical approach and attempts to

3. H. R. Vaughn and G. E. Reis, "A Magnus Theory for Bodies of
Revolution," SC-RR-72 0537, Sandia Laboratories, Albuquerque, New
Mexico, January 1973; also, AIAA Journal Vol. 11, No. 10, p. 1396,
October 1973.
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include the effects of vortex formation, centrifugal pressure distri-
bution and boundary-layer transition on the Magnus force experienced by
the spinning projectile in addition to the conventional contribution of
asymmetric boundary-layer development. The theory is presented as
closed form solutions for Magnus force and moment for several body
configurations. The closed form solutions for an ogive-cylinder body
have been taken directly from Reference 3 and the data of this experi-
ment used as input to calculate Magnus force and moment.

Two examples are shown in Figures 12a and 12b comparing the calcu-
lated and experimental Magnus force for two different boundary-layer
configurations. The data are plotted as Magnus force coefficient
versus spin rate. In Figure 12a--high p0 with natural transition--the

theory is approximately 60% greater in absolute value than the experi-
ment. The theory indicates nonlinearity with spin similar to that
indicated in the experimental data. In Figure 12b--high p0 with trip-

ped boundary layer--the theory is greater in absolute value than the
experiment by almost 200%. Thus, it is seen that Vaughn's theory over-
predicts the Magnus force and is overly sensitive to boundary-layer
configuration, at least for the results considered here. These results
are typical of comparisons made utilizing all the data tabulated in
Table II.

C. Normal Force Measurements

Examples of the normal force measurements are shown in Figures
13a-c. The data are plotted as normal force coefficient versus angle
of attack, and were obtained as the model was slowly pitched in angle
of attack from +120 to -4* while the model was not spinning. These
data are linear for a 4 40. For a > 40, the data become increasingly
nonlinear indicating the increasing influence of vortex formation on
the surface pressure distribution. These data also indicate that the
normal force coefficient is relatively insensitive to Reynolds number
and boundary-layer configuration.

IV. CONCLUDING REMARKS

An experimental investigation of the effects of surface spin on
boundary-layer development and Magnus force for a seven caliber tangent-
ogive-cylinder model with a one-caliber ogive at M = 2, 3, and 4 has
been reported.

The data indicate that boundary-layer transition is affected by
spin in a manner consistent with the physical picture of the flow. It
has also been shown that Magnus force is significantly influenced by
the boundary-layer configuration. These data strengthen the need for a
good theoretical model of the effects of surface spin on boundary-layer
development in order for Magnus effects to be calculated with sufficient
confidence to be useful in projectile design.

11



The data from this experiment have been tabulated to facilitate
their usefulness in evaluating theoretical models of Magnus. A prelim-
inary comparison of these data with Vaughn's theory indicated that the
theory overpredicted the Magnus force and was overly sensitive to the
boundary-layer configuration.
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Table I. Wind Tunnel Nominal Operating Conditions

M POP N/M 2 x 10-6  T0 , OK Test Type Config. ReD x 10-6

2 .214 310 Optical 10 1.26

2 .107 310 Force 10 0.63

2 .214 310 Force 10 1.26

2 .214 310 Force 20 1.26

3 .300 310 Optical 10 1.06

3 .167 310 Force 10 0.59

3 .300 310 Force 10 1.06

3 .300 310 Force 20 1.06

4 .504 310 Optical 10 1.06

4 .372 310 Force 10 0.79

4 .504 310 Force 10 1.06

4 .504 310 Force 20 1.06

NOTE: Configuration (CONFIG.) = 10, basic model without boundary
layer trip

= 20, basic model with boundary layer
trip consisting of a .63 cm
wide band of #80 sand grit
placed 2.5 cm from the model
leading edge

13
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Figure 1. View of Tangent-Ogive-Cylinder Model as Mounted in the

Test Section of Supersonic Wind Tunnel No. 1
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Figure 4. Spark Shadowgraph Showing Boundary Layer Tripped
Using a Band of No. 80 Sand Grit, M =2, -4*,

Re. 8.7139 x 10 6
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SYM. RUN NUMBER MACH CONFIG. ALPHA ReD x 106

* 137 2.00 10.000 10.80 0.63

* 136 2.00 10.000 8.71 0.63

£ 135 2.00 10.000 6.56 0.63

134 2.00 10.000 4.37 0.63
+ 133 2.00 10.000 2.18 0.63
x 139 2.00 10.000 -2.18 0.63
0 140 2.00 10.000 -4.37 0.63

0.02-

Il

0.01 s

I* A

- A

* A

-0.03 A m

-00 UUx xxxx

-00 . I II 1 1 1

0.0 * U

++ +

L ) - 0 . 0 1 a A A i i v

U0 0 0.3 0.4 0.5

ED/

Figure lba. Magnus Force Measurements for Low Po' Natural Boundary

Layer Transi tion--Predomi nantly Lami nar Boundary Layer.
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SYM. RUN NUMBER MACH CONFIG. ALPHA Re x 106
D

£ 124 2.00 10.000 7.20 1.26
v 123 2.00 10.000 4.81 1.26
+ 122 2.00 10.000 2.41 1.26
x 127 2.00 10.000 -2.43 1.26
* 128 2.00 10.000 -4.82 1.26

0.02

0.01-,"

0 . 0 0 .; ; X x. I I I I I I I I I I I I I I I I I I

I • V + + + + + + + + + + + + + + + + + + +--~~ vv•v

U A

LL A• vv

vv v vv v

EDe

•L vvvv

U) A

-0.02 -X X

- Y

CC~

-0.03

-0.04 -

0.0 0.1 0.2 0.3 0.4 0.5

PD/V

Figure lOb. Magnus Force Measurements for High Po, Natural Boundary
Layer Transition--Comparable Regions of Laminar and
Turbulent Boundary Layer, M = 2
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SYM. RUN NUMBER HAM CONPIG. ALPHA ReD x 106
* 218 2.00 20.000 7.14 1.26
£ 217 2.00 20.000 4.79 1.26
v 216 2.00 20.000 2.38 1.26+ 215 2.00 20.000 1.18 1.26.x 220 2.00- 20.000. -2.43. 1.26.0.02 221 2.00 20.000 -4.82 1.26

I SIN

0.01 o.. jixxxxxxxxX,x~xXXX XX  , X X

0.00 I I I I I I I IA*Vvv ++ +_
46VV Yl- +++++++++++++++

i 0.0 I a A •vvvv•
0 A A A

U-0,01 a A- .., A

=-0.02 -
z
CD

Trppd u.b.n. Bud. ae,

-0.03

-0.04

-0.05-
0.0 0.1 0.2 0.3 0.4 0.5

PD/v

Figure 10c. Magnus Force Measurements for High pop
Tripped Turbulent Boundary Layer, M =2
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SYM. RUN NUMBER MACH CONFIG. ALPHA ReD x 106

n 182 4.00 10.000 6.24 0.79
A 181 4.00 10.000 4.17 0.79
v 180 4.00 10.000 2.08 0.79
+ 179 4.00 10.000 1.03 0.79
x 183 4.00 10.000 -1.05 0.79
* 184 4.00 10.000 -4.19 0.79

0.02

0.01 - •"'
me•

0 O wxxxx^^xxxxxxx

• & -vvv +++ ++++

i ~LL mAAAA4

;~LL &A-0 mi &a

UjU
L)U

_ n~

n -0.02-

zB

0

CC

-0.03

-0.04

0.0 O.1 0.2 0.3 0.4 0.5
PD/V

Figure lla. Magnus Force Measurements for Low Po' Natural Boundary

Layer Transition--Predominantly Laminar Boundary Layer,M 4
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SYM. RUN NUMBER MACH CONFIG. ALPHA ReD x 106

& 169 4.00 10.000 6.36 1.06
168 4.00 10.000 4.26 1.06

+ 167 4.00 10.000 2.13 1.06
X 171 4.00 10.000 -2.12 1.06
* 172 4.00 10.000 -4.25 1.06

o.0-

0.01 -

e

I~il

:oxxxxxxxx A'£

0.00 t*; t I I I I

tD-0.04

~-0.05 -

-0.04.-

0.0 0.I 0.20.0.0.

FD/

i Figure llb. lHagnus Force Measurements for High Po' Natural Boundar: i

Turbulent Boundary Layer, =4
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SYM. RUN NUMBER MACH CONFIG. ALPHA ReD x 106

• 196 4.00 20.000 6.35 1.06
£ 195 4.00 20.000 4.26 1.06193 4.00 20.000 1.06 1.06+ 197 4.00 20.000 -1.06 1.06
X 198 4.00 20.000 -2.14 1.06U 199 4.00 20.000 -4.25 1.06

0.0k -

- == == Ivvx x XX X XX

xx + +x+X++x+++++

U -0 .01

iU vUU

-0.02
z

-0.03

-0.04-

-0.05 i I I i I I I I

0.0 0.1 0.2 0.3 0.4 0.5FD/V

Figure [Ic. Magnus Force Measurements for High p0
Tripped Turbulent Boundary Layer, M = 4
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.04 TOC MODEL
M=3.0
C= 4.42

.02 BL= LT
0 EXP, RUN NO. 144

i. Cy- THEORY, REF 3
Ol 

y 
0 

0

-.02 0-

-.04
I I I I I I I I

0 .04 .08 .12 .16 .20
PD/2V

Figure 12. Comparison of Magnus Force Measurements to Theory, High p0

a. Natural Boundary Layer Transition, M 3, at 4.420
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.04 TOC MODEL
M =3.0
U =4.42

.02 BL=TT

o EXP, RUN NO.205

CY -- THEORY, REF3
y 00

0
00

-.02 0
i0 

0 
0,

0

-. 04

0 .04 .08 .12 .16 .20

PD/2V

Figure 12. Concluded

b. Tripped Turbulent Boundary Layer, M = 3, at 4.420
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6SYM. RUN NuBER MACH CONFIG. ReD x 10

x 130 2.00 10.000 0.63 N
• 129 2.00 10.000 OX2

IOB.1 
U@

WU

ww

UU

co
Cj 0.4

!i c.~0.4

LJ

C)

z

-0.0

-0. 4 I I I I I I I I I I I I I I I I I I I 1 I I I I I I

-Ic -8 -4 0 4 8 12 16

ANGLE OF ATTACK

Figure 13. Normal Force Data

a. M=2
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SYM. RUN NUMIRIII CII CONFIG. Rl x 10

x INI 3.00 10.000 0.59
. 150 3.00 10.000 1.06

I.O

(. 6

L -

ci 0.4

0

0

L -

z

0.0

Zr

1 -0.4

-8 -4 0 4 8 I6

ANGLE OF ATTACK

Figure 13. Continued

b. M=3 
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SYN. RUN NUMBER HACH CONFIG. ReD x 10

v 200 4.00 20.000 1.06
+ 185 4.00 10.000 0.79
x 173 4.00 10.000 0.79

I.0 164 4.00 10.000 1.06

0.8

0 0.4

0
U-

-.0

0 ..

-12 -a -4 a 4 8 IP 16

ANGLE OF ATTACK

Figure 13. Concluded

c. M=4
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LIST OF SYMBOLS

ALPHA angle of attack, degrees

BL = LT natural transition, laminar and turbulent boundary layer

BL = TT tripped turbulent boundary layer

CM pitching moment coefficient, MN/qSDP, referenced to model
base

CN normal force coefficient, FN/qS

C y side (Magnus) force coefficient, Fy/qS

CYM side (Magnus) moment coefficient, My/qSDZ, referenced to
model base

D diameter of base of model, .0508 m

F normal forceN

F side (Magnus) force

Y
model length, 7 calibers = .3556 m

MN pitching moment, referenced to model base

side (Magnus) moment, referenced to model base

Po tunnel total pressure, Pascals

P spin rate of model, radians per second

PD/V non-dimensional spin rate

q free stream dynamic pressure, 1 pV
2

ReD  Reynolds number based on model diameter and free stream
properties

Pe Reynolds number based on model length and free stream
properties

S reference area, iD2/4

41
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LST OF SYMBOLS (Continued)

T tunnel total temperature, degrees Kelvin

0

V free stream velocity, cm per second

Xtr location of boundary layer transition, calibers from
model base

a angle of attack, degrees

p free stream density

azimuthal position, equals zero on windward ray,
see Figure 5

(9 spin rate of model, revolutions per minute

'4
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